Technical faults in elastically-actuated robots

  • Philipp Beckerle Technische Universität Darmstadt
  • Gernot Perner Technische Universität Darmstadt
  • Florian Stuhlenmiller Technische Universität Darmstadt
  • Stephan Rinderknecht Technische Universität Darmstadt


Robotic systems using elastic actuators provide safe human-robot interaction and energy-efficient operation. Since increased complexity and critical operation states could foster fault occurrence, this paper investigates faults in elastically-actuated robots. To identify and assess relevant faults, expert opinions from an online survey are statistically evaluated and methodological analyses are performed considering a practical example. A variable torsion stiffness actuator is therefore examined by a function and structure analysis that feeds a failure mode and effects analysis. Beyond confirming the results of previous studies, the analyses in this paper substantiate the potential relevance of faults in the elastic elements and that faults might have crucial effect on human-machine interaction in general. From a methodological perspective, failure mode and effects analysis appears very suitable for fault analysis in systems engineering.


  1. S. Haddadin, A. Albu-Schaeffer, A. De Luca, G. Hirzinger, Collision detection and reaction: A contribution to safe physical human-robot interaction, in: IEEE International Conference on Robotics and Automation, 2008.
  2. J.-J. Park, Y.-L. Lee, J.-B. Song, B.-S. Kim, Safe joint mechanism based on nonlinear stiffness for safe human-robot collision, in: IEEE International 255 Conference on Robotics and Automation, 2008.
  3. T. Lens, O. von Stryk, Investigation of safety in human-robot-interaction for a series elastic, tendon-driven robot driven robot arm, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012.
  4. A. M. Dollar, H. Herr, Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art, IEEE Transactions on Robotics 24 (1) (2008) 144 – 158.
  5. J. Veneman, E. Burdet, d. K. H. van, D. Lefeber, Emerging directions in lower limb externally wearable robots for gait rehabilitation and augmentation - a review, in: Advances in Cooperative Robotics, World Scientific Publishing Co. Pte. Ltd, 2017, pp. 840–850.
  6. M. Windrich, M. Grimmer, O. Christ, S. Rinderknecht, P. Beckerle, Active lower limb prosthetics: a systematic review of design issues and solutions, BioMedical Engineering OnLine 15 (3) (2016) 5–19.
  7. B. Vanderborght, R. Van Ham, D. Lefeber, T. G. Sugar, K. W. Hollander, Comparison of Mechanical Design and Energy Consumption of Adaptable, Passive-compliant Actuators, International Journal of Robotics Research 28 (2009) 90 – 103.
  8. P. Beckerle, J. Wojtusch, S. Rinderknecht, O. von Stryk, Analysis of system dynamic influences in robotic actuators with variable stiffness, Smart Structures and Systems 13 (4) (2014) 711 – 730.
  9. P. Beckerle, T. Verstraten, G. Mathijssen, R. Furn´emont, B. Vanderborght, D. Lefeber, Series and parallel elastic actuation: Influence of operating positions on design and control, IEEE/ASME Transactions on Mechatronics 22 (1) (2017) 521–529.
  10. B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D. G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M. Van Damme, 14R. Van Ham, L. C. Visser, S. Wolf, Variable impedance actuators: A review, Robotics and Autonomous Systems 61 (12) (2013) 1601 – 1614.
  11. A. De Santis, B. Siciliano, A. De Luca, A. Bicchi, An atlas of physical humanrobot interaction, Mechanism and Machine Theory 43 (3) (2008) 253 – 270.
  12. G. A. Pratt, M. M. Williamson, Series elastic actuators, in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 1995.
  13. T. Morita, S. Sugano, Design and development of a new robot joint using a mechanical impedance adjuster, in: IEEE International Conference on Robotics and Automation, 1995.
  14. P. Beckerle, Practical relevance of faults, diagnosis methods, and tolerance measures in elastically actuated robots, Control Engineering Practice 50 (2016) 95–100.
  15. Y. Izumikawa, K. Yubai, J. Hirai, Fault-tolerant control system of flexible arm for sensor fault by using reaction force observer, in: IEEE International Workshop on Advanced Motion Control, 2004.
  16. G. Perner, L. Yousif, S. Rinderknecht, P. Beckerle, Feature extraction for fault diagnosis in series elastic actuators, in: Conference on Control and Fault-Tolerant Systems, 2016.
  17. P. Beckerle, J. Wojtusch, J. Schuy, B. Strah, S. Rinderknecht, O. v. Stryk, Power-optimized stiffness and nonlinear position control of an actuator with variable torsion stiffness, in: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2013.
  18. P. Erler, P. Beckerle, B. Strah, S. Rinderknecht, Experimental comparison of nonlinear motion control methods for a variable stiffness actuator, in: IEEE International Conference on Biomedical Robotics and Biomechatronics, 2014.
  19. R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, 2006.
  20. R. Van Ham, T. G. Sugar, B. Vanderborght, K. W. Hollander, D. Lefeber, Compliant Actuator Designs Review of Actuators with Passive Adjustable Compliance/Controllable Stiffness for Robotic Applications, IEEE Robotics & Automation Magazine 16 (2009) 81 – 94.
  21. J. Feldhusen, K.-H. Grote (Eds.), Pahl/Beitz Konstruktionslehre, Springer Vieweg, 2013.
  22. R. F. Stapelberg, Handbook of Reliability, Availability, Maintainability and 320 Safety in Engineering Design, Springer, 2009.
BECKERLE, Philipp et al. Technical faults in elastically-actuated robots. atp edition, [S.l.], v. 59, n. 06, p. 36-45, juni 2017. ISSN 2364-3137. Verfügbar unter: <>. Date accessed: 24 aug. 2017. doi: