OPC UA von der Cloud bis ins Feld

Durchgehende vertikale semantische Integration durch OPC UA in Hardware

  • Chris Paul Iatrou
  • Leon Urbas TU Dresden
  • Philipp Bauer ABB AG
  • Francisco Mendoza ABB AG
  • Hendrik Deckert ABB AG
  • Tilo Merlin ABB AG
  • Réne Bachmann Bürkert Werke GmbH & Co. KG
  • Martin Luschtinetz Bürkert Werke GmbH & Co. KG
  • Daniel Rammer Bürkert Werke GmbH & Co. KG
  • Thomas Störtkuhl Koramis GmbH
  • Sascha Fitz Koramis GmbH
  • Heiner Bauer TU Dresden
  • Sebastian Höppner TU Dresden
  • Felix Neumärker TU Dresden
  • Christian Mayr TU Dresden
  • Robert Wittig TU Dresden

Abstract

Im Rahmen der digitalen Transformation etabliert sich OPC UA zunehmend als eine Schlüsseltechnologie für industrielle Kommunikation, cyber-physische Produktionssysteme und Applikationen für das Industrial Internet of Things (IIoT). Das Projekt fast semantics zeigt, dass durch einen in Hardware umgesetzten OPC UA Server diese Schlüsseltechnologie auch für kleinste eingebettete Geräte zugänglich wird. Im vorliegenden Beitrag werden Anforderungen an semantische Kommunikation in kontemporären und zukünftigen Anwendungen skizziert, um den durchgängigen Einsatz von OPC UA von der Feldebene, über klassische SCADA-Systeme bis in die Cloud zu untersuchen.

References

  1. Nothdurft, L., Epple, U., Schröder, T., Diedrich, C., Grossmann, D., Banerjee, S., Schmied, S., Iatrou, C., Graube, M., Urbas, L., Henrichs, T., & Erben, S. (2018). NOA Demonstratoren Special. atp magazin, 60(01-02), 44-69. doi:10.17560/atp.v60i01-02.2348
  2. Schuh, G., Anderl, R., Gausemeier, J., ten Hompel, M., Wahlster, W. (2017). Industrie 4.0 maturity index. Managing the digital transformation of companies. Munich: Herbert Utz.
  3. Palm, F., Grüner, S., Pfrommer, J., Graube, M., & Urbas, L. (2015, September). Open source as enabler for OPC UA in industrial automation. In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA) (pp. 1-6). IEEE.
  4. Fojcik, M., Sande, O., Fojcik, M. K., Bødal, A. S., Haavik, T. E., Kalstad, K. H., ... & Steinholm, T. R. (2019). Some Solutions for Improving OPC UA Performance. In International Conference on Computational Collective Intelligence (pp. 249-258). Springer, Cham.
  5. Schleipen, M. (2018). Praxishandbuch OPC UA: Grundlagen - Implementierung - Nachrüstung – Praxisbeispiele. Vogel Business Media.
  6. Kessler, M. (2019). APL bringt Ethernet ins Feld in der Prozessanlage – Stand der Arbeiten – Ausblick – Anwendungen. In VDI-Berichte 2351, pp. 383ff, Baden-Baden.
  7. Banerjee, S., Großmann, D. (2017). Aggregation of information models—An OPC UA based approach to a holistic model of models. In 2017 4th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 296-299). IEEE.
  8. Graube, M., Hensel, S., Iatrou, C., Urbas, L. (2017). Information models in OPC UA and their advantages and disadvantages. In 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1-8). IEEE.
  9. Iatrou, C. P., Bauer, H., Graube, M., Höppner, S., Rahm, J., Urbas, L. (2019). Hard Real-Time Capable OPC UA Server as Hardware Peripheral for Single Chip IoT Systems. In 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1631-1634). IEEE.
  10. Iatrou, C. P., Urbas, L. (2016). OPC UA hardware offloading engine as dedicated peripheral IP core. In 2016 IEEE World Conference on Factory Communication Systems (WFCS) (pp. 1-4). IEEE.
  11. Atzmueller, M., Klöpper, B., Mawla, H., Jäschke, B., Hollender, M., Graube, M., Arnu, D., Schmidt, A., Heinze, S., Schorer, L., Kroll, A., Stu, G. (2016). Big data analytics for proactive industrial decision support. atp magazin, 58(09), 62-74. Abgerufen am Februar 5, 2020 von http://ojs.di-verlag.de/index.php/atp_edition/article/view/2315
  12. Fojcik, M., Cupek, R., Ziebinski, A., Sande, O., Fojcik, M. K. (2019). Quality of service in real-time OPC UA applications. In International Conference on Computational Collective Intelligence (pp. 239-248). Springer, Cham.
  13. Grüner, S., Malakuti, S., Schmitt, J., Terzimehic, T., Wenger, M., Elfaham, H. (2018). Alternatives for Flexible Deployment Architectures in Industrial Automation Systems. In 2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA) (Vol. 1, pp. 35-42). IEEE.
  14. Low, K. H., Leow, W. K., & Ang Jr, M. H. (2004, July). Task allocation via self-organizing swarm coalitions in distributed mobile sensor network. In AAAI (Vol. 4, pp. 28-33).
  15. Zhang, Z., Long, K., Wang, J., Dressler, F. (2013). On swarm intelligence inspired self-organized networking: its bionic mechanisms, designing principles and optimization approaches. IEEE Communications Surveys & Tutorials, 16(1), 513-537.
  16. Dong, Q., Dargie, W. (2012). Evaluation of the reliability of RSSI for indoor localization. In 2012 International Conference on Wireless Communications in Underground and Confined Areas (pp. 1-6). IEEE.
  17. Klettner, C., Tauchnitz, T., Epple, U., Nothdurft, L., Diedrich, C., Schröder, T., Großmann, D., Banerjee, S., Krauß, M., Iatrou, C., & Urbas, L. (2017). Namur Open Architecture. atp magazin, 59(01-02), 20-37. doi:10.17560/atp.v59i01-02.620
  18. The Open Group. (2019). O-PAS(TM) Standard, Version 1.0: Part 1 – Technical Architecture Overview (Informative) Normative Document (Draft) P190-1. Abgerufen von: https://publications.opengroup.org/p190?_ga=2.145691252.1970986748.1580906847-305877661.1580906847
  19. Atzori, L., Iera, A., Morabito, G. (2010). The internet of things: A survey. Computer networks, 54(15), 2787-2805.
  20. Jia, X., Feng, Q., Fan, T., Lei, Q. (2012). RFID technology and its applications in Internet of Things (IoT). In 2012 2nd international conference on consumer electronics, communications and networks (CECNet) (pp. 1282-1285). IEEE.
  21. Liu, C. H., Yang, B., Liu, T. (2014). Efficient naming, addressing and profile services in Internet-of-Things sensory environments. Ad Hoc Networks, 18, 85-101.
  22. Strassner, J. (2006). Convergence Seamlessly-A Look Inside Motorola's Seamless Mobility Initiative. In 2006 1st IEEE International Workshop on Broadband Convergence Networks.
  23. Pfrommer, J. (2019). Flexible real-time communication in automation with OPC UA publish/subscribe and Time Sensitive Networking. Abgerufen von: https://www.iosb.fraunhofer.de/servlet/is/81756/
  24. Kranenburg, R. V. (2008). The Internet of Things: A critique of ambient technology and the all-seeing network of RFID. Institute of Network Cultures.
  25. Breivold, H. P., Sandström, K. (2015). Internet of things for industrial automation--challenges and technical solutions. In 2015 IEEE International Conference on Data Science and Data Intensive Systems (pp. 532-539). IEEE.
  26. Schulz, P., Matthe, M., Klessig, H., Simsek, M., Fettweis, G., Ansari, J., ... & Puschmann, A. (2017). Latency critical IoT applications in 5G: Perspective on the design of radio interface and network architecture. IEEE Communications Magazine, 55(2), 70-78.
  27. Palattella, M. R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., Ladid, L. (2016). Internet of things in the 5G era: Enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34(3), 510-527.
  28. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on industrial informatics, 10(4), 2233-2243.
  29. Harner, A. (2018). CERT@VDE: IT-Sicherheitsplattform für Unternehmen der Industrieautomation. Vortrag auf dem 18. Leitkongress Mess- und Automatisierungstechnik, Baden-Baden.
  30. Siegwart, C., Adamczyk, H., Frey, G. (2018). Industrial Security – I4.0 Analysis of the IEC 62443. In VDI-Berichte 2330, pp. 369-382, VDI-Verlag, Düsseldorf.
  31. Bernshausen, J., Haller, A., Holm, T., Hoernicke, M., Obst, M., Ladiges, J. (2016). NAMUR Modul Type Package – Definition. atp magazin, 58(01-02), 72-81. doi:10.17560/atp.v58i01-02.554
  32. Kuon, I., Rose, J. (2009). Exploring area and delay tradeoffs in FPGAs with architecture and automated transistor design. IEEE transactions on very large scale integration (VLSI) systems, 19(1), 71-84.
  33. Höppner, S., Vogginger, B., Yan, Y., Dixius, A., Scholze, S., Partzsch, J., ... & Cederstroem, L. (2019). Dynamic power management for neuromorphic many-core systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 66(8), 2973-2986.
  34. Nemec, M., Sys, M., Svenda, P., Klinec, D., & Matyas, V. (2017). The return of coppersmith's attack: Practical factorization of widely used rsa moduli. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (pp. 1631-1648).
  35. Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., ... & Schwarz, M. (2019, May). Spectre attacks: Exploiting speculative execution. In 2019 IEEE Symposium on Security and Privacy (SP) (pp. 1-19). IEEE.
  36. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., ... & Yarom, Y. (2018). Meltdown: Reading kernel memory from user space. In 27th {USENIX} Security Symposium ({USENIX} Security 18) (pp. 973-990).
  37. Manjiyani, Z., Iatrou, C. P., Urbas, L. (2019). Open Source Cognitive Control System Architecture. In Emerging Technologies & Factory Automation (ETFA), 2019 IEEE 24th Conference on, Zaragossa, Spain.
Veröffentlicht
2020-03-03
Zitieren
IATROU, Chris Paul et al. OPC UA von der Cloud bis ins Feld. atp magazin, [S.l.], v. 62, n. 3, p. 90-101, märz 2020. ISSN 2364-3137. Verfügbar unter: <http://ojs.di-verlag.de/index.php/atp_edition/article/view/2454>. Date accessed: 28 märz 2020. doi: https://doi.org/10.17560/atp.v62i3.2454.
Rubrik
Hauptbeitrag / Peer-Review

Am häufigsten gelesenen Artikel dieser/dieses Autor/in